
6800 instruction set (6800 assembler)

Alphabet listing of instructions

ABA
ADC
ADD
AND
ASL
ASR
BCC
BCS
BEQ

BGE
BGT
BHI
BIT
BLE
BLS
BLT
BMI
BNE

BPL
BRA
BSR
BVC
BVS
CBA
CLC
CLI
CLR

CLV
CMP
COM
CPX
DAA
DEC
DES
DEX
EOR

INC
INS
INX
JMP
JSR
LDA
LDS
LDX
LSR

NEG
NOP
ORA
PSH
PUL
ROL
ROR
RTI
RTS

SBA
SBC
SEC
SEI
SEV
STA
STS
STX
SUB

SWI
TAB
TAP
TBA
TPA
TST
TSX
TXS
WAI

Decoding table

MSB \ LSB 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NOP
(INH)

TAP
(INH)

TPA
(INH)

INX
(INH)

DEX
(INH)

CLV
(INH)

SEV
(INH)

CLC
(INH)

SEC
(INH)

CLI
(INH)

SEI
(INH)

1 SBA
(INH)

CBA
(INH)

TAB
(INH)

TBA
(INH)

DAA
(INH)

ABA
(ACC)

2 BRA
(REL)

BHI
(REL)

BLS
(REL)

BCC
(REL)

BCS
(REL)

BNE
(REL)

BEQ
(REL)

BVC
(REL)

BVS
(REL)

BPL
(REL)

BMI
(REL)

BGE
(REL)

BLT
(REL)

BGT
(REL)

BLE
(REL)

3 TSX
(INH)

INS
(INH)

PUL A
(ACC)

PUL B
(ACC)

DES
(INH)

TXS
(INH)

PSH A
(ACC)

PSH B
(ACC)

RTS
(INH)

RTI
(INH)

WAI
(INH)

SWI
(INH)

4 NEG A
(ACC)

COM A
(ACC)

LSR A
(ACC)

ROR A
(ACC)

ASR A
(ACC)

ASL A
(ACC)

ROL A
(ACC)

DEC A
(ACC)

INC A
(ACC)

TST A
(ACC)

CLR A
(ACC)

5 NEG B
(ACC)

COM B
(ACC)

LSR B
(ACC)

ROR B
(ACC)

ASR B
(ACC)

ASL B
(ACC)

ROL B
(ACC)

DEC B
(ACC)

INC B
(ACC)

TST B
(ACC)

CLR B
(ACC)

6 NEG
(IDX)

COM
(IDX)

LSR
(IDX)

ROR
(IDX)

ASR
(IDX)

ASL
(IDX)

ROL
(IDX)

DEC
(IDX)

INC
(IDX)

TST
(IDX)

JMP
(IDX)

CLR
(IDX)

7 NEG
(EXT)

COM
(EXT)

LSR
(EXT)

ROR
(EXT)

ASR
(EXT)

ASL
(EXT)

ROL
(EXT)

DEC
(EXT)

INC
(EXT)

TST
(EXT)

JMP
(EXT)

CLR
(EXT)

8 SUB A
(IMM)

CMP A
(IMM)

SBC A
(IMM)

AND A
(IMM)

BIT A
(IMM)

LDA A
(IMM)

EOR A
(IMM)

ADC A
(IMM)

ORA A
(IMM)

ADD A
(IMM)

CPX A
(IMM)

BSR
(REL)

LDS
(IMM)

9 SUB A
(DIR)

CMP A
(DIR)

SBC A
(DIR)

AND A
(DIR)

BIT A
(DIR)

LDA A
(DIR)

STA A
(DIR)

EOR A
(DIR)

ADC A
(DIR)

ORA A
(DIR)

ADD A
(DIR)

CPX A
(DIR)

LDS
(DIR)

STS
(DIR)

A SUB A
(IDX)

CMP A
(IDX)

SBC A
(IDX)

AND A
(IDX)

BIT A
(IDX)

LDA A
(IDX)

STA A
(IDX)

EOR A
(IDX)

ADC A
(IDX)

ORA A
(IDX)

ADD A
(IDX)

CPX A
(IDX)

JSR
(IDX)

LDS
(IDX)

STS
(IDX)

B SUB A
(EXT)

CMP A
(EXT)

SBC A
(EXT)

AND A
(EXT)

BIT A
(EXT)

LDA A
(EXT)

STA A
(EXT)

EOR A
(EXT)

ADC A
(EXT)

ORA A
(EXT)

ADD A
(EXT)

CPX A
(EXT)

JSR
(EXT)

LDS
(EXT)

STS
(EXT)

C SUB B
(IMM)

CMP B
(IMM)

SBC B
(IMM)

AND B
(IMM)

BIT B
(IMM)

LDA B
(IMM)

EOR B
(IMM)

ADC B
(IMM)

ORA B
(IMM)

ADD B
(IMM)

LDX
(IMM)

D SUB B
(DIR)

CMP B
(DIR)

SBC B
(DIR)

AND B
(DIR)

BIT B
(DIR)

LDA B
(DIR)

STA B
(DIR)

EOR B
(DIR)

ADC B
(DIR)

ORA B
(DIR)

ADD B
(DIR)

LDX
(DIR)

STX
(DIR)

E SUB B
(IDX)

CMP B
(IDX)

SBC B
(IDX)

AND B
(IDX)

BIT B
(IDX)

LDA B
(IDX)

STA B
(IDX)

EOR B
(IDX)

ADC B
(IDX)

ORA B
(IDX)

ADD B
(IDX)

LDX
(IDX)

STX
(IDX)

F SUB B
(EXT)

CMP B
(EXT)

SBC B
(EXT)

AND B
(EXT)

BIT B
(EXT)

LDA B
(EXT)

STA B
(EXT)

EOR B
(EXT)

ADC B
(EXT)

ORA B
(EXT)

ADD B
(EXT)

LDX
(EXT)

STX
(EXT)

6800 instruction set http://www.8bit-era.cz/6800.html

1 of 7 9/13/2018, 7:30 AM

Abbreviations:

6800 Addressing modes:

ACC - Accumulator
In accumulator addressing, either accumulator A or accumulator B is specified. These are 1- byte instructions.
Ex: ABA adds the contetns of accumulators and stores the result in accumulator A

IMM - Immediate
In immediate addressing, operand is located immediately after the opcode in the second byte of the instruction in program memory (except LDS
and LDX where the operand is in the second and third bytes of the instruction). These are 2-byte or 3-byte instructions.
Ex: LDAA #$25 loads the number (25)H into accumulator A

DIR - Direct
In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly
address the lowest 256 bytes of the memory, i.e, locations 0 through 255. Enhanced execution times are achieved by storing data in these
locations. These are 2-byte instructions.
Ex: LDAA $25 loads the contents of the memory address (25)H into accumulator A

EXT - Extended
In extended addressing, the address contained in the second byte of the instruction is used as the higher eight bits of the address of the operand.
The third byte of the instruction is used as the lower eight bits of the address for the operand. This is an absolute address in the memory. These
are 3-byte instructions.
Ex: LDAA $1000 loads the contents of the memory address (1000)H into accumulator A

IDX - Indexed
In indexed addressing, the address contained in the second byte of the instruction is added to the index register’s lowest eight bits. The carry is
then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a
temporary address register so there is no change to the index register. These are 2-byte instructions.
Ex: LDX #$1000 or LDAA $10,X
Initially, LDX #$1000 instruction loads 1000H to the index register (X) using immediate addressing. Then LDAA $10,X instruction, using indexed
addressing, loads the contents of memory address (10)H + X = 1010H into accumulator A.

INH - Implied (Inherent)
In the implied addressing mode, the instruction gives the address inherently (i.e, stack pointer, index register, etc.). Inherent instructions are used
when no operands need to be fetched. These are 1 byte instructions.
Ex: INX increases the contents of the Index register by one. The address information is "inherent" in the instruction itself.
INCA increases the contents of the accumulator A by one.
DECB decreases the contents of the accumulator B by one.

REL - Relative
The relative addressing mode is used with most of the branching instructions on the 6802 microprocessor. The first byte of the instruction is the
opcode. The second byte of the instruction is called the offset. The offset is interpreted as a signed 7-bit number. If the MSB (most significant bit)
of the offset is 0, the number is positive, which indicates a forward branch. If the MSB of the offset is 1, the number is negative, which indicates a
backward branch. This allows the user to address data in a range of -126 to +129 bytes of the present instruction. These are 2-byte instructions.
Ex:

PC Hex Label Instruction
0009 2004 BRA 0FH

The registers:

Statuses shown:

Symbols in the STATUSES column:

 AccumulatorA,B

 Index registerX

 Program CounterPC

 Stack PointerSP

 Status registerSR

 Carry statusC

 Zero statusZ

 Sign statusS

 Overflow statusO

 Interrupt Mask statusI

 Auxiliary Carry statusAC

 operation does not affect status(blank)

 operation affects statusx

 flag is cleared by the operation0

 flag is set by the operation1

 8-bit immediate datadata8

 16-bit immediate datadata16

 8-bit direct addressaddr8

 16-bit extended addressaddr16

 8-bit signed address displacementdisp

 bits 15-8 from 16bit value(HI)

 bits 7-0 from 16bit value(LO)

 content of ...[...]

 implied addressing (content of [content of ...])[[...]]

 Logical AND∧
 Logical OR∨
 Logical Exclusive-OR⊻
 Data is transferred in the direction of the arrow←

6800 instruction set http://www.8bit-era.cz/6800.html

2 of 7 9/13/2018, 7:30 AM

MNEMO SYNTAX MODE BYTES CODE CYCLES C Z S O Ac I SYMBOLIC OPERATION DESCRIPTION

ABA ABA ACC 1 $1B 2 x x x x x - [A] ← [A] + [B] Add B to A

ADC ADC A #data8 IMM 2 $89 2 x x x x x - [A] ← [A] + data8 + C Add contents of Memory + Carry
Flag to AccumulatorADC A addr8 DIR 2 $99 3 [A] ← [A] + [addr8] + C

ADC A data8,X IDX 2 $A9 5 [A] ← [A] + [data8 + [X]] + C

ADC A addr16 EXT 3 $B9 4 [A] ← [A] + [addr16] + C

ADC B #data8 IMM 2 $C9 2 [B] ← [B] + data8 + C

ADC B addr8 DIR 2 $D9 3 [B] ← [B] + [addr8] + C

ADC B data8,X IDX 2 $E9 5 [B] ← [B] + [data8 + [X]] + C

ADC B addr16 EXT 3 $F9 4 [B] ← [B] + [addr16] + C

ADD ADD A #data8 IMM 2 $8B 2 x x x x x - [A] ← [A] + data8 Add Memory contents to the
AccumulatorADD A addr8 DIR 2 $9B 3 [A] ← [A] + [addr8]

ADD A data8,X IDX 2 $AB 5 [A] ← [A] + [data8 + [X]]

ADD A addr16 EXT 3 $BB 4 [A] ← [A] + [addr16]

ADD B #data8 IMM 2 $CB 2 [B] ← [B] + data8

ADD B addr8 DIR 2 $DB 3 [B] ← [B] + [addr8]

ADD B data8,X IDX 2 $EB 5 [B] ← [B] + [data8 + [X]]

ADD B addr16 EXT 3 $FB 4 [B] ← [B] + [addr16]

AND AND A #data8 IMM 2 $84 2 - x x 0 - - [A] ← [A] ∧ data8 Memory contents AND the
Accumulator to the Accumulator

AND A addr8 DIR 2 $94 3 [A] ← [A] ∧ [addr8]

AND A data8,X IDX 2 $A4 5 [A] ← [A] ∧ [data8 + [X]]

AND A addr16 EXT 3 $B4 4 [A] ← [A] ∧ [addr16]

AND B #data8 IMM 2 $C4 2 [B] ← [B] ∧ data8

AND B addr8 DIR 2 $D4 3 [B] ← [B] ∧ [addr8]

AND B data8,X IDX 2 $E4 5 [B] ← [B] ∧ [data8 + [X]]

AND B addr16 EXT 3 $F4 4 [B] ← [B] ∧ [addr16]

ASL ASL A ACC 1 $48 2 x x x x - - Arithmetic Shift Left. Bit 0 is set to
0.ASL B ACC 1 $58 2

ASL data8,X IDX 2 $68 7

ASL addr16 EXT 3 $78 6

ASR ASR A ACC 1 $47 2 x x x x - - Arithmetic Shift Right. Bit 7 stays
the same.ASR B ACC 1 $57 2

ASR data8,X IDX 2 $67 7

ASR addr16 EXT 3 $77 6

BCC BCC disp REL 2 $24 4 - - - - - - (C == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if carry clear

BCS BCS disp REL 2 $25 4 - - - - - - (C == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if carry set

BEQ BEQ disp REL 2 $27 4 - - - - - - (Z == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if equal to zero

BGE BGE disp REL 2 $2C 4 - - - - - - (S ⊻ O == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if greater than or equal to
zero

BGT BGT disp REL 2 $2E 4 - - - - - - (Z ∨ (S ⊻ O) == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if greater than zero

BHI BHI disp REL 2 $22 4 - - - - - - (C ∨ Z == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if Accumulator contents
higher than comparand

BIT BIT A #data8 IMM 2 $85 2 - x x 0 - - [A] ∧ data8 Memory contents AND the
Accumulator, but only Status
register is affected.

BIT A addr8 DIR 2 $95 3 [A] ∧ [addr8]

BIT A data8,X IDX 2 $A5 5 [A] ∧ [data8 + [X]]

BIT A addr16 EXT 3 $B5 4 [A] ∧ [addr16]

BIT B #data8 IMM 2 $C5 2 [B] ∧ data8

BIT B addr8 DIR 2 $D5 3 [B] ∧ [addr8]

BIT B data8,X IDX 2 $E5 5 [B] ∧ [data8 + [X]]

BIT B addr16 EXT 3 $F5 4 [B] ∧ [addr16]

BLE BLE disp REL 2 $2F 4 - - - - - - (Z ∨ (S ⊻ O) == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if less than or equal to
zero

BLS BLS disp REL 2 $23 4 - - - - - - (C ∨ Z == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if Accumulator contents
less than or same as comparand

BLT BLT disp REL 2 $2D 4 - - - - - - (S ⊻ O == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if less than zero

BMI BMI disp REL 2 $2B 4 - - - - - - (S == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if minus

BNE BNE disp REL 2 $26 4 - - - - - - (Z == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if not equal to zero

6800 instruction set http://www.8bit-era.cz/6800.html

3 of 7 9/13/2018, 7:30 AM

BPL BPL disp REL 2 $2A 4 - - - - - - (S == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if plus

BRA BRA disp REL 2 $20 4 - - - - - - [PC] ← [PC] + disp + 2 Unconditional branch relative to
present Program Counter
contents.

BSR BSR disp REL 2 $8D 8 - - - - - - [[SP]] ← [PC(LO)],
[[SP] - 1] ← [PC(HI)],
[SP] ← [SP] - 2,
[PC] ← [PC] + disp + 2

Unconditional branch to
subroutine located relative to
present Program Counter
contents.

BVC BVC disp REL 2 $28 4 - - - - - - (O == 0) ?
{[PC] ← [PC] + disp + 2}

Branch if overflow clear

BVS BVS disp REL 2 $29 4 - - - - - - (O == 1) ?
{[PC] ← [PC] + disp + 2}

Branch if overflow set

CBA CBA INH 1 $11 2 x x x x - - [A] - [B] Compare contents of
Accumulators A and B. Only the
Status register is affected.

CLC CLC INH 1 $0C 2 0 - - - - - C ← 0 Clear the Carry Flag

CLI CLI INH 1 $0E 2 - - - - - 0 I ← 0 Clear the Interrupt flag to enable
interrupts

CLR CLR A ACC 1 $4F 2 0 1 0 0 - - [A] ← 0 Clear the Accumulator

CLR B ACC 1 $5F 2 [B] ← 0

CLR data8,X IDX 2 $6F 7 [data8 + [X]] ← 0 Clear the Memory location

CLR addr16 EXT 3 $7F 6 [addr16] ← 0

CLV CLV INH 1 $0A 2 - - - 0 - - O ← 0 Clear the Overflow flag

CMP CMP A #data8 IMM 2 $81 2 x x x x - - [A] - data8 Compare the contents of Memory
and Accumulator. Only the Status
register is affected.

CMP A addr8 DIR 2 $91 3 [A] - [addr8]

CMP A data8,X IDX 2 $A1 5 [A] - [data8 + [X]]

CMP A addr16 EXT 3 $B1 4 [A] - [addr16]

CMP B #data8 IMM 2 $C1 2 [B] - data8

CMP B addr8 DIR 2 $D1 3 [B] - [addr8]

CMP B data8,X IDX 2 $E1 5 [B] - [data8 + [X]]

CMP B addr16 EXT 3 $F1 4 [B] - [addr16]

COM COM A ACC 1 $43 2 1 x x 0 - - [A] ← $FF - [A] Complement the Accumulator

COM B ACC 1 $53 2 [B] ← $FF - [B]

COM data8,X IDX 2 $63 7 [data8 + [X]] ← $FF - [data8
+ [X]]

Complement the Memory
Location

COM addr16 EXT 3 $73 6 [addr16] ← $FF - [addr16]

CPX CPX addr8 DIR 2 $9C 4 - x x x - - [X(HI)] - [addr8],
[X(LO)] - [addr8 + 1]

Compare the contents of Memory
to the Index Register X

CPX data8,X IDX 2 $AC 6 [X(HI)] - [data8 + [X]],
[X(LO)] - [data8 + [X] + 1]

CPX #data16 IMM 3 $8C 3 [X(HI)] - data16(HI),
[X(LO)] - data16(LO)

CPX addr16 EXT 3 $BC 5 [X(HI)] - [addr16(HI)],
[X(LO)] - [addr16(LO)]

DAA DAA INH 1 $19 2 x x x x - - Decimal Adjust Accumulator A

DEC DEC A ACC 1 $4A 2 - x x x - - [A] ← [A] - 1 Decrement the Accumulator

DEC B ACC 1 $5A 2 [B] ← [B] - 1

DEC data8,X IDX 2 $6A 7 [data8 + [X]] ← [data8 + [X]] -
1

Decrement the Memory Location

DEC addr16 EXT 3 $7A 6 [addr16] ← [addr16] - 1

DES DES INH 1 $34 4 - - - - - - [SP] ← [SP] - 1 Decrement the Stack Pointer

DEX DEX INH 1 $09 4 - x - - - - [X] ← [X] - 1 Decrement the Index Register X

EOR EOR A #data8 IMM 2 $88 2 - x x 0 - - [A] ← [A] ⊻ data8 Memory contents EXLCLUSIVE
OR the Accumulator

EOR A addr8 DIR 2 $98 3 [A] ← [A] ⊻ [addr8]

EOR A data8,X IDX 2 $A8 5 [A] ← [A] ⊻ [data8 + [X]]

EOR A addr16 EXT 3 $B8 4 [A] ← [A] ⊻ [addr16]

EOR B #data8 IMM 2 $C8 2 [B] ← [B] ⊻ data8

EOR B addr8 DIR 2 $D8 3 [B] ← [B] ⊻ [addr8]

EOR B data8,X IDX 2 $E8 5 [B] ← [B] ⊻ [data8 + [X]]

EOR B addr16 EXT 3 $F8 4 [B] ← [B] ⊻ [addr16]

INC INC A ACC 1 $4C 2 - x x x - - [A] ← [A] + 1 Increment the Accumulator

INC B ACC 1 $5C 2 [B] ← [B] + 1

INC data8,X IDX 2 $6C 7 [data8 + [X]] ← [data8 + [X]] +
1

Increment the Memory Location

INC addr16 EXT 3 $7C 6 [addr16] ← [addr16] + 1

INS INS INH 1 $31 4 - - - - - - [SP] ← [SP] + 1 Increment the Stack Pointer

6800 instruction set http://www.8bit-era.cz/6800.html

4 of 7 9/13/2018, 7:30 AM

INX INX INH 1 $08 4 - x - - - - [X] ← [X] + 1 Increment the Index Register X

JMP JMP data8,X IDX 2 $6E 4 - - - - - - [PC] ← data8 + [X] Jump

JMP addr16 EXT 3 $7E 3 [PC] ← addr16

JSR JSR data8,X IDX 2 $AD 8 - - - - - - [[SP]] ← [PC(LO)],
[[SP] - 1] ← [PC(HI)],
[SP] ← [SP] - 2,
[PC] ← data8 + [X]

Jump to Subroutine

JSR addr16 EXT 3 $BD 9 [[SP]] ← [PC(LO)],
[[SP] - 1] ← [PC(HI)],
[SP] ← [SP] - 2,
[PC] ← addr16

LDA LDA A #data8 IMM 2 $86 2 - x x 0 - - [A] ← data8 Load Accumulator from Memory

LDA A addr8 DIR 2 $96 3 [A] ← [addr8]

LDA A data8,X IDX 2 $A6 5 [A] ← [data8 + [X]]

LDA A addr16 EXT 3 $B6 4 [A] ← [addr16]

LDA B #data8 IMM 2 $C6 2 [B] ← data8

LDA B addr8 DIR 2 $D6 3 [B] ← [addr8]

LDA B data8,X IDX 2 $E6 5 [B] ← [data8 + [X]]

LDA B addr16 EXT 3 $F6 4 [B] ← [addr16]

LDS LDS addr8 DIR 2 $9E 4 - x x 0 - - [SP(HI)] ← [addr8],
[SP(LO)] ← [addr8 + 1]

Load the Stack Pointer

LDS data8,X IDX 2 $AE 6 [SP(HI)] ← [data8 + [X]],
[SP(LO)] ← [data8 + [X] + 1]

LDS #data16 IMM 3 $8E 3 [SP(HI)] ← data16(HI),
[SP(LO)] ← data16(LO)

LDS addr16 EXT 3 $BE 5 [SP(HI)] ← [addr16(HI)],
[SP(LO)] ← [addr16(LO)]

LDX LDX addr8 DIR 2 $DE 4 - x x 0 - - [X(HI)] ← [addr8],
[X(LO)] ← [addr8 + 1]

Load the Index Register

LDX data8,X IDX 2 $EE 6 [X(HI)] ← [data8 + [X]],
[X(LO)] ← [data8 + [X] + 1]

LDX #data16 IMM 3 $CE 3 [X(HI)] ← data16(HI),
[X(LO)] ← data16(LO)

LDX addr16 EXT 3 $FE 5 [X(HI)] ← [addr16(HI)],
[X(LO)] ← [addr16(LO)]

LSR LSR A ACC 1 $44 2 x x 0 x - - Logical Shift Right. Bit 7 is set to
0.LSR B ACC 1 $54 2

LSR data8,X IDX 2 $64 7

LSR addr16 EXT 3 $74 6

NEG NEG A ACC 1 $40 2 x x x x - - [A] ← 0 - [A] Negate the Accumulator

NEG B ACC 1 $50 2 [B] ← 0 - [B]

NEG data8,X IDX 2 $60 7 [data8 + [X]] ← 0 - [data8 +
[X]]

Negate the Memory Location

NEG addr16 EXT 3 $70 6 [addr16] ← 0 - [addr16]

NOP NOP INH 1 $01 2 - - - - - - No Operation

ORA ORA A #data8 IMM 2 $8A 2 - x x 0 - - [A] ← [A] ∨ data8 OR the Accumulator

ORA A addr8 DIR 2 $9A 3 [A] ← [A] ∨ [addr8]

ORA A data8,X IDX 2 $AA 5 [A] ← [A] ∨ [data8 + [X]]

ORA A addr16 EXT 3 $BA 4 [A] ← [A] ∨ [addr16]

ORA B #data8 IMM 2 $CA 2 [B] ← [B] ∨ data8

ORA B addr8 DIR 2 $DA 3 [B] ← [B] ∨ [addr8]

ORA B data8,X IDX 2 $EA 5 [B] ← [B] ∨ [data8 + [X]]

ORA B addr16 EXT 3 $FA 4 [B] ← [B] ∨ [addr16]

PSH PSH A ACC 1 $36 4 - - - - - - [[SP]] ← [A], [SP] ← [SP] - 1 Push Accumulator onto the Stack

PSH B ACC 1 $37 4 [[SP]] ← [B],
[SP] ← [SP] - 1

PUL PUL A ACC 1 $32 4 - - - - - - [SP] ← [SP] + 1, [A] ← [[SP]] Pull Data from Stack to
AccumulatorPUL B ACC 1 $33 4 [SP] ← [SP] + 1,

[B] ← [[SP]]

ROL ROL A ACC 1 $49 2 x x x x - - Rotate left through Carry.

ROL B ACC 1 $59 2

ROL data8,X IDX 2 $69 7

ROL addr16 EXT 3 $79 6

ROR ROR A ACC 1 $46 2 x x x x - - Rotate right through Carry.

ROR B ACC 1 $56 2

ROR data8,X IDX 2 $66 7

ROR addr16 EXT 3 $76 6

6800 instruction set http://www.8bit-era.cz/6800.html

5 of 7 9/13/2018, 7:30 AM

RTI RTI INH 1 $3B 10 x x x x x x [SR] ← [[SP] + 1],
[B] ← [[SP] + 2],
[A] ← [[SP] + 3],
[X(HI)] ← [[SP] + 4],
[X(LO)] ← [[SP] + 5],
[PC(HI)] ← [[SP] + 6],
[PC(LO)] ← [[SP] + 7],
[SP] ← [SP] + 7

Return from interrupt. Put
registers from Stack and
increment Stack Pointer.

RTS RTS INH 1 $39 5 - - - - - - [PC(HI)] ← [[SP] + 1],
[PC(LO)] ← [[SP] + 2],
[SP] ← [SP] + 2

Return from subroutine. Pull PC
from top of Stack and increment
Stack Pointer.

SBA SBA INH 1 $10 2 x x x x - - [A] ← [A] - [B] Subtract contents of Accumulator
B from those of Accumulator A.

SBC SBC A #data8 IMM 2 $82 2 x x x x - - [A] ← [A] - data8 - C Subtract Mem and Carry Flag
from AccumulatorSBC A addr8 DIR 2 $92 3 [A] ← [A] - [addr8] - C

SBC A data8,X IDX 2 $A2 5 [A] ← [A] - [data8 + [X]] - C

SBC A addr16 EXT 3 $B2 4 [A] ← [A] - [addr16] - C

SBC B #data8 IMM 2 $C2 2 [B] ← [B] - data8 - C

SBC B addr8 DIR 2 $D2 3 [B] ← [B] - [addr8] - C

SBC B data8,X IDX 2 $E2 5 [B] ← [B] - [data8 + [X]] - C

SBC B addr16 EXT 3 $F2 4 [B] ← [B] - [addr16] - C

SEC SEC INH 1 $0D 2 1 - - - - - C ← 1 Set the Carry Flag

SEI SEI INH 1 $0F 2 - - - - - 1 I ← 1 Set the Interrupt Flag to disable
interrupts

SEV SEV INH 1 $0B 2 - - - 1 - - O ← 1 Set the Overflow Flag

STA STA A addr8 DIR 2 $97 4 - x x 0 - - [addr8] ← [A] Store Accumulator in Memory

STA A data8,X IDX 2 $A7 6 [data8 + [X]] ← [A]

STA A addr16 EXT 3 $B7 5 [addr16] ← [A]

STA B addr8 DIR 2 $D7 4 [addr8] ← [B]

STA B data8,X IDX 2 $E7 6 [data8 + [X]] ← [B]

STA B addr16 EXT 3 $F7 5 [addr16] ← [B]

STS STS addr8 DIR 2 $9F 5 - x x 0 - - [addr8] ← [SP(HI)],
[addr8 + 1] ← [SP(LO)]

Store the Stack Pointer

STS data8,X IDX 2 $AF 7 [data8 + [X]] ← [SP(HI)],
[data8 + [X] + 1] ← [SP(LO)]

STS addr16 EXT 3 $BF 6 [addr16(HI)] ← [SP(HI)],
[addr16(LO)] ← [SP(LO)]

STX STX addr8 DIR 2 $DF 5 - x x 0 - - [addr8] ← [X(HI)],
[addr8 + 1] ← [X(LO)]

Store the Index Register X

STX data8,X IDX 2 $EF 7 [data8 + [X]] ← [X(HI)],
[data8 + [X] + 1] ← [X(LO)]

STX addr16 EXT 3 $FF 6 [addr16(HI)] ← [X(HI)],
[addr16(LO)] ← [X(LO)]

SUB SUB A #data8 IMM 2 $80 2 x x x x - - [A] ← [A] - data8 Subtract Memory contents from
AccumulatorSUB A addr8 DIR 2 $90 3 [A] ← [A] - [addr8]

SUB A data8,X IDX 2 $A0 5 [A] ← [A] - [data8 + [X]]

SUB A addr16 EXT 3 $B0 4 [A] ← [A] - [addr16]

SUB B #data8 IMM 2 $C0 2 [B] ← [B] - data8

SUB B addr8 DIR 2 $D0 3 [B] ← [B] - [addr8]

SUB B data8,X IDX 2 $E0 5 [B] ← [B] - [data8 + [X]]

SUB B addr16 EXT 3 $F0 4 [B] ← [B] - [addr16]

SWI SWI INH 1 $3F 12 - - - - - 1 [[SP]] ← [PC(LO)],
[[SP] - 1] ← [PC(HI)],
[[SP] - 2] ← [X(LO)],
[[SP] - 3] ← [X(HI)],
[[SP] - 4] ← [A],
[[SP] - 5] ← [B],
[[SP] - 6] ← [SR],
[SP] ← [SP] - 7,
[PC(HI)] ← [$FFFA],
[PC(LO)] ← [$FFFB]

Software Interrupt: push registers
onto Stack, decrement Stack
Pointer, and jump to interrupt
subroutine.

TAB TAB INH 1 $16 2 - x x 0 - - [B] ← [A] Transfer A to B

TAP TAP INH 1 $06 2 x x x x x - [SR] ← [A] Transfer A to Status Register

TBA TBA INH 1 $17 2 - x x 0 - - [A] ← [B] Transfer B to A

TPA TPA INH 1 $07 2 - - - - - - [A] ← [SR] Transfer Status Register to A

TST TST A ACC 1 $4D 2 0 x x 0 - - [A] - 0 Test the Accumulator

TST B ACC 1 $5D 2 [B] - 0

TST data8,X IDX 2 $6D 7 [data8 + [X]] - 0 Test the Memory Location

TST addr16 EXT 3 $7D 6 [addr16] - 0

6800 instruction set http://www.8bit-era.cz/6800.html

6 of 7 9/13/2018, 7:30 AM

TSX TSX INH 1 $30 4 - - - - - - [X] ← [SP] + 1 Move Stack Pointer contents to
Index register and increment.

TXS TXS INH 1 $35 4 - - - - - - [SP] ← [X] - 1 Move Index register contents to
Stack Pointer and decrement.

WAI WAI INH 1 $3E 9 - - - - - 1 [[SP]] ← [PC(LO)],
[[SP] - 1] ← [PC(HI)],
[[SP] - 2] ← [X(LO)],
[[SP] - 3] ← [X(HI)],
[[SP] - 4] ← [A],
[[SP] - 5] ← [B],
[[SP] - 6] ← [SR],
[SP] ← [SP] - 7

Push registers onto Stack,
decrement Stack Pointer, end
wiat for interrupt. If [I] = 1 when
WAI is executed, a non-maskable
interrupt is required to exit the
Wait state. Otherwise, [I] ← 1
when the interrupt occurs.

6800 instruction set http://www.8bit-era.cz/6800.html

7 of 7 9/13/2018, 7:30 AM

